Optimal partition problems for the fractional Laplacian
نویسندگان
چکیده
منابع مشابه
Laplacian eigenvalues and partition problems in hypergraphs
We use the generalization of the Laplacian matrix to hypergraphs to obtain several spectral-like results on partition problems in hypergraphs which are computationally difficult to solve (NP-hard or NP-complete). Therefore it is very important to obtain nontrivial bounds. More precisely, the following parameters are bounded in the paper: bipartition width, averaged minimal cut, isoperimetric nu...
متن کاملBiorthogonal cubic Hermite spline multiwavelets on the interval for solving the fractional optimal control problems
In this paper, a new numerical method for solving fractional optimal control problems (FOCPs) is presented. The fractional derivative in the dynamic system is described in the Caputo sense. The method is based upon biorthogonal cubic Hermite spline multiwavelets approximations. The properties of biorthogonal multiwavelets are first given. The operational matrix of fractional Riemann-Lioville in...
متن کاملExistence and uniqueness of solutions for p-laplacian fractional order boundary value problems
In this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-Laplacian fractional order differential equations. We use Schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. We include some examples to show the applicability of our results.
متن کاملNoether’s Theorem for Fractional Optimal Control Problems
We begin by reporting on some recent results of the authors (Frederico and Torres, 2006), concerning the use of the fractional Euler-Lagrange notion to prove a Noether-like theorem for the problems of the calculus of variations with fractional derivatives. We then obtain, following the Lagrange multiplier technique used in (Agrawal, 2004), a new version of Noether’s theorem to fractional optima...
متن کاملbiorthogonal cubic hermite spline multiwavelets on the interval for solving the fractional optimal control problems
in this paper, a new numerical method for solving fractional optimal control problems (focps) is presented. the fractional derivative in the dynamic system is described in the caputo sense. the method is based upon biorthogonal cubic hermite spline multiwavelets approxima-tions. the properties of biorthogonal multiwavelets are first given. the operational matrix of fractional riemann-lioville i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annali di Matematica Pura ed Applicata (1923 -)
سال: 2017
ISSN: 0373-3114,1618-1891
DOI: 10.1007/s10231-017-0689-5